HomeVideoAiichiro Nagaki |Kyoto University| Japan | Green Chemistry 2015 | Conference Series LLC 

Aiichiro Nagaki |Kyoto University| Japan | Green Chemistry 2015 | Conference Series LLC 



2nd International Conference on Past and Present Research Systems of Green Chemistry September 14-16, 2015 Orlando, USA

Scientific Talk On: Organolithium Chemistry Using Flow Microreactors to Green Chemistry

Click here for Abstract and Biography: http://greenchemistry.conferenceseries.com/abstract/2015/organolithium-chemistry-using-flow-microreactors-to-green-chemistry

Biography:

I received his PhD in 2005 from Kyoto University under the supervision of Professor Jun-ichi Yoshida. I worked with Professor Hiroaki Suga, Tokyo University from 2005 as a postdoctoral fellow. In 2006, he became an assistant professor of Kyoto University. I was promoted to lecturer in 2013. My current research interests are organic synthesis, polymer synthesis, and microreactor synthesis. Awards: Takeda Pharmaceutical Co., Ltd. Award in Synthetic Organic Chemistry, Japan (2012), Incentive Award in Synthetic Organic Chemistry, Japan (2012), and Young Innovator Award on Chemistry and Micro-Nano Systems (2013).

Abstract:

Protecting-group-free synthesis has received significant recent research interest in the context of ideal synthesis and green sustainable chemistry. In general, organolithium species react with electrophilic functional groups very rapidly, and therefore such functional groups should be protected before an organolithium reaction, if they are not involved in the desired transformation. If organolithium chemistry could be free from such a limitation, its power would be greatly enhanced. A flow microreactor enables such protecting-group-free organolithium reactions by choosing the appropriate residence time and the reaction temperature. Organolithium species bearing alkoxycarbonyl, nitro, and ketone carbonyl groups can be generated and reacted with various electrophiles using a flow-microreactor system. In addition, asymmetric carbolithiation of conjugate enynes can be also achieved without the epimerization of a configurationally unstable chiral organolithium intermediate based on precise control of the residence time using a flow microreactor. In this presentation, we report that a flow microreactor system enables the generation of various unstable organolithium compounds.

Conference Series LLC (3000+ Global Events): conferenceseries.com 
Global Medical Conferences: conferenceseries.com
Global Nursing Conferences: nursingconference.com
Global Pharmaceutical Conferences: pharmaceuticalconferences.com
Global Cancer Conferences: cancersummit.org 
Global Diabetes Conferences: diabetesexpo.com 
Global Dental Conferences: dentalcongress.com 
700+ Open Access Journals: omicsonline.org 

Likes: 0

Viewed:

source

Previous post
Foods To Avoid When You Have Type 2 Diabetes
Next post
FIRST LOOK: LAVA Cheese Tarts at SM Aura Premier, Bonifacio Global City

Leave a Reply

Be the First to Comment!

Notify of
avatar
wpDiscuz